Advanced LPT-DMX firmware user manual

Copyright © 2004 Tommy Sools (www.sools.com). All rights are reserved.

Version 1.0, May 2004.
Introduction

This firmware is made for Benoît Bouchez’s LPT-DMX interface which was published in the French Elektor magazine of March 2002 and the British, Dutch and German Elektor magazines of April 2002. Mr. Bouchez’s interface works excellent for DMX output, but currently lacks DMX input features, although the possibility was left open for implementing such later.

As it seems that Mr. Bouchez is very busy with other projects and therefore didn’t have much time for improving his firmware for Elektor’s LPT-DMX interface, I’ve decided to start on making my own firmware. The firmware isn’t based on the existing firmware, but for optimized performance it is rather written from scratch, merely using some ideas of Mr. Bouchez. As a result there is no Elektor copyright on this new firmware.
The firmware is compatible with Elektor’s original protocol, however if the special features of this interface are to be used, all communication between the PC and interface must be according to a new protocol, for which an easy to use Delphi header file and a generic .DLL file for use in other languages than Delphi are provided. Both the header file and .DLL file assume the use of the SmallPort driver for parallel port in- and output, although this could easily be changed if using the Delphi header file by changing the “uparport.pas” file. Thanks go out to Alexander Weitzman for creating this Delphi component and driver and making it available for everyone to use.
The new protocol is implemented because this is to allow for information to be returned from the interface to the PC on a nibble by nibble base, which was not possible if sticking to the old protocol, because of the hardware design.
Features
Generic

· Compatible with original Elektor Centronics protocol

(though there’s no support for advanced functionality in this mode);
· Uses SPP standard (i.e. does not require EPP or ECP protocols).
Output

· Transmission can be enabled or disabled by software;
· Capability to output DMX data for 255 buffered channels (excluding start code) provided in a variety of ways:

· Single output change;
· Bulk output change;
· Mass output change.
· Capability to restrict number of output channels;
· Capability to adjust break time and mark after break time, configurable up to approximately the microsecond;
· Capability to change output startcode.
Input

· Reception can be enabled or disabled by software, to save processing time;
· Capability to read DMX data for 245 buffered channels (excluding start code) retrieved in a variety of ways; additional input channels will be ignored:
· Single input read;
· Bulk input read.
· Capability to filter based on a specific input start code, or to accept just any input start code;
· Capability to retrieve actual filtered input start code;
· Capability to retrieve number of input channels for filtered start code, to be able to know how many channel values are valid;
· Capability to retrieve the time since any data was received for the filtered start code (accurate in milliseconds), to be able to verify that the DMX input is still alive and that the received input data is still valid.
Merge

· Capability of transmitting the received DMX input channels (up to the supported number of 245 channels) after all 255 (or less) buffered output channels have been transmitted, allowing for a total of 500 channels to be output in this mode. This could be handy to control certain devices using a dedicated DMX controller, while controlling other devices using the LPT-DMX interface, while all DMX devices are hooked to the same DMX line;
· The DMX input channels could still be read out by the PC in this mode.

Multiplexer
· Built-in multiplexer which can optionally be enabled, allowing for 8 DMX output channels to directly be controlled by 8 microcontroller pins (which are unused in the original LPT-DMX interface), making the respective output channels take the value 255 or 0;
· No PC is required for multiplexer operation, once the EEPROM has been correctly initialized for this;

· The multiplexer output values can be inverted for more hardware application possibilities (if inverted, output will be 0 if it would normally be 255 and be 255 if it would normally be 0);
· The address of the block of multiplexed channels can be configured by software;
· DMX software can temporarily override the multiplexer enabled setting so that the DMX software gets to decide the output channel values, no matter what the status of the multiplexer pins is;

· Multiplexer values can be read out by PC, no matter whether the multiplexer is disabled or overridden or not.
EEPROM
· All settings and output channel values can be written to the EEPROM so that they will be loaded if the interface is reset or powered on. This of course is useful in case of power interruptions or PC problems.
Small API example

// make sure that the parallel port driver is opened

parInit;

// make sure that the interface is ready to accept a command
resync($378);
// make sure that DMX output is enabled

enableOutput($378);
// set channel 1 to value 128
output($378, 0, 128);
// set channel 2 to value 255
output($378, 1, 255);
// as we changed the output enabled setting, make sure to restore

// the user’s preferred setting
readEEPROM($378);
// job finished, so make sure that the interface will be able to

// work in compatibility mode again
finish($378);
// make sure that the parallel port driver will be closed again

parFinish;

Data transfer

If using the advanced protocol of this firmware, data transfer from PC to the DMX interface must take place as follows:
· Make sure that STR is low (located on CONTROL port)

· Check that BUSY is high (located on STATUS port)
· Put output data on DATA port
· Make STR high

· Wait until BUSY is low, indicating that the interface recognized the strobe

· Make STR low

· Wait until BUSY is high again, indicating that the interface has finished processing and put any nibble with return data on ACK (bit 3 of nibble), PE (bit 2 of nibble), SEL (bit 1 of nibble) and ERR (bit 0 of nibble), all of which are located on the STATUS port
· The output data no longer needs to be kept on DATA port anymore, any returned data will remain being available until another command is executed

· If BUSY is low, there is an interface problem

For an implementation of the algorithm in Delphi you can take a look in the writeChar method of the uadvdmx.pas file. This file also has constants for all implemented commands, and contains functions that already implement a relatively to use API for using the interface, which is documented in the rest of this document.
Commands
Basic

COMMAND_SYNC
API call:

resync(port: Word)

Communication:

	PC
	Transmission
	Interface

	#255

(

Description:

This command will be used in various occasions where the DMX interface needs notification from the PC, but no actual information is needed from the PC. For example it will be used to retrieve the high order nibble from the interface while the low order nibble was already obtained.

Usually this command is a relatively safe command to execute at any time. If it is executed while in the main menu, it will simply be ignored, however it will trigger the error led. This results in a way to assure that the DMX interface is in a defined state, in the main menu, by sending COMMAND_SYNC 256 times, as this is the maximum number of parameters that any command could accept. Such synchronization is what the “resync” API call takes care of. The error led indicates whether the synchronization was successful; if the error led would be off after a resynchronization, that indicates that there is a bug in the firmware.
COMMAND_RESET
API call:

reset(port: Word)

Communication:

	PC
	Transmission
	Interface

	-

(

Description:

This command will make sure that all parameters and channel values will be restored from the EEPROM again and other settings will be restored, so that the DMX interface is in its initial state again. Please realize that this will momentarily interrupt the unit’s operation so that DMX transmission will be stopped for a short while.
COMMAND_DEFAULTS
API call:

defaults(port: Word)

Communication:

	PC
	Transmission
	Interface

	P

(

Description:

This command will reset the following parameter settings to their factory default values, unlike COMMAND_RESET, which resets the parameter setting to the defaults stored in the EEPROM:
· Break time (88 microseconds);

· Mark after break time (8 microseconds);

· Output count (255 channels excluding start code);

· Input wildcard status (disabled);

· Input start code (0);

· Multiplexer address (0);

· Multiplexer inverting status (no inverting);

· Mass output transfer limits (first channel up to last channel for a range of 255 channels).

As you can see, it will neither reset the input or output buffer tables with zeroes, nor will it reset the input enabled status, output enabled status, multiplexer enabled status and merge enabled status.

COMMAND_FINISH
API call:

finish(port: Word)

Communication:

	PC
	Transmission
	Interface

	^

(

Description:

This is an important command that must be executed once a program is done with working with the DMX interface and is ready to release it, in order to allow for the Elektor’s Centronics protocol to work with the interface again. After executing this command the parallel input pins will be restored again to their original values, which is necessary for the Centronics protocol to be able to work, otherwise a program might lock up if trying to use the interface in compatibility mode.
COMMAND_CLEAR_INPUT
API call:

clearInput(port: Word)

Communication:

	PC
	Transmission
	Interface

	8

(

Description:

This command will fill the DMX input buffer with all zeroes, which also happens after the interface is reset or powered on.

COMMAND_CLEAR_OUTPUT
API call:

clearOutput(port: Word)

Communication:

	PC
	Transmission
	Interface

	9

(

Description:

This command will fill the DMX output buffer with all zeroes.

COMMAND_CLEAR_ALL
API call:

clearAll(port: Word)

Communication:

	PC
	Transmission
	Interface

	C

(

Description:

This command will fill both the DMX input and output buffers with all zeroes, similar to executing COMMAND_CLEAR_INPUT and COMMAND_CLEAR_OUTPUT consequently, but with better performance.

COMMAND_ECHO
API call:

echo(port: Word; echoRequest: Byte; var echoResult: Byte)

Communication:

	PC
	Transmission
	Interface

	%

(

	<any byte>

(

	<least significant nibble of byte>

(

	#255

(

	<most significant nibble of number of byte>

(

Description:

This is a special command which will return whatever byte that is passed to it. After executing this command and passing a byte to it, the least significant nibble of the byte that was passed to this command will be returned. COMMAND_SYNC must then be sent so that the most significant nibble will be returned. This can be useful for determining if the interface is still functioning well.

Output

Initially transmission may be disabled (depending on the EEPROM setting). Therefore it may be important to use COMMAND_ENABLE_OUTPUT in order to have any output of DMX channel values take place.

COMMAND_ENABLE_OUTPUT

API call:

enableOutput(port: Word)
Communication:
	PC
	Transmission
	Interface

	T

(

Description:

After executing this command, transmission of DMX channel values on the DMX output is enabled.
COMMAND_DISABLE_OUTPUT

API call:

disableOutput(port: Word)
Communication:
	PC
	Transmission
	Interface

	T
(

Description:

After executing this command, transmission of DMX channel values on the DMX output is disabled. Disabling the DMX output could be useful in order to trigger any built-in programs of all devices connected to the DMX output line.
COMMAND_OUTPUT

API call:

output(port: Word; channel: Byte; value: Byte)

Communication:

	PC
	Transmission
	Interface

	o

(

	<channel number>

(

	<channel value>

(

Description:

After executing this command and specifying the channel number <channel number> which’s value is to be requested, the new value for the channel must be specified so that it will be set in the DMX output buffer. A channel number of 0 indicates the first DMX channel (which is not the start code).

COMMAND_BULK_OUTPUT

API call:
bulkOutput(port: Word; channels: array of Byte; var values: array of Byte)

Communication:

	PC
	Transmission
	Interface

	O

(

	<channel number 1>

(

	<channel value>

(

	…

	<channel number n>

(

	<channel value>

(

	#255

(

Description:

With this command, multiple output channel values can be set in the DMX output buffer. It works similar to COMMAND_OUTPUT, but this way the command indicator doesn’t have to be transmitted for each channel that is to be set, saving about 33 % of the data being transmitted. It is only favorable however if at least 3 channel values will be set.

After executing the command, the channel number must be specified which’s value is to be set. Then the new channel value must be specified. A channel number of 0 indicates the first DMX channel (which is not the start code). Then another channel number can be specified, which value will be set in a similar way. This process continues until COMMAND_SYNC (255) is specified as the channel number, which will immediately stop the cycle.

Mass output

Another approach in setting many/all values in the DMX output buffer is called “mass” output here. A command COMMAND_SET_MASS_OUTPUT_LIMITS is available using which the range of channels for which values will be output can be set. Then using a command COMMAND_MASS_OUTPUT, only the actual values for the specified range need to be specified, saving much transfer time. The disadvantage however is that it is relatively unreliable. If a resynchronization would be done inside a COMMAND_BULK_OUTPUT, at most one channel value would be invalid. If it would be done inside this command, all channel values could be set invalidly. Still it should be pretty safe to use this command anyway as communication errors would rarely occur at all.

COMMAND_SET_MASS_OUTPUT_LIMITS
API call:
setMassOutputLimits(port: Word; minChannel: Byte; maxChannel: Byte)

Communication:

	PC
	Transmission
	Interface

	1
(

	<minimum channel number>

(

	<maximum channel number>

(

Description:

After executing this command and specifying the minimum and maximum channel numbers, the channel range will be set that will be used for future COMMAND_MASS_OUTPUT requests. A channel number of 0 indicates the first DMX channel (which is not the start code). If any of the channel numbers equals 255, or if the minimum channel number is greater than the maximum channel number, both values will be ignored and this command will have no effect.

COMMAND_MASS_OUTPUT
API call:

massOutput(port: Word; values: array of Byte)

Communication:

	PC
	Transmission
	Interface

	Q
(

	<channel value 1>

(

	…

	<channel value n>

(

Description:

After using this command the values must be provided for all channels in the range specified using COMMAND_SET_MASS_OUTPUT_LIMITS. The number of channel values that must be provided equals <maximum channel number> - <minimum channel number> + 1. All provided channel values will be set in the DMX output buffer.
Input

Initially reception may be disabled (depending on the EEPROM setting). Therefore it may be important to use COMMAND_ENABLE_INPUT in order to have any buffering of DMX input channel values take place.

COMMAND_ENABLE_INPUT

API call:

enableInput(port: Word)

Communication:

	PC
	Transmission
	Interface

	R

(

Description:

After executing this command, reception of DMX channel values from the DMX input is enabled.

COMMAND_DISABLE_INPUT

API call:

disableInput(port: Word)

Communication:

	PC
	Transmission
	Interface

	r
(

Description:

After executing this command, reception of DMX channel values from the DMX input is disabled. Disabling the DMX input could be useful to save some processing time.

COMMAND_INPUT

API call:

input(port: Word; channel: Byte; var value: Byte)

Communication:

	PC
	Transmission
	Interface

	i
(

	<channel number>

(

	<least significant nibble of channel value >

(

	#255

(

	<most significant nibble of channel value>

(

Description:

After executing this command and specifying the channel number <channel number> which’s value is to be requested, the least significant nibble of the channel’s value will be returned from the buffer. A channel number of 0 indicates the first DMX channel (which is not the start code). COMMAND_SYNC must then be sent so that the most significant nibble will be returned.

COMMAND_BULK_INPUT

API call:
bulkInput(port: Word; channels: array of Byte; var values: array of Byte)

Communication:

	PC
	Transmission
	Interface

	I

(

	<channel number 1>

(

	<least significant nibble of channel value>

(

	#255

(

	<most significant nibble of channel value>

(

	…

	<channel number n>

(

	<least significant nibble of channel value>

(

	#255

(

	<most significant nibble of channel value>

(

	#255

(

Description:

With this command, multiple input channel values can be retrieved. It works similar to COMMAND_INPUT, but this way the command indicator doesn’t have to be transmitted for each channel that is to be requested, saving about 33 % of the data being transmitted. It is only favorable however if at least 3 channel values will be read.

After executing the command, the channel number must be specified which’s value is to be requested, the least significant nibble of the channel’s value will be returned from the buffer. A channel number of 0 indicates the first DMX channel (which is not the start code). COMMAND_SYNC must then be sent so that the most significant nibble will be returned. Then another channel number can be specified, which value will be retrieved in a similar way. This process continues until COMMAND_SYNC (255) is specified as the channel number, which will immediately stop the cycle.
Input filtering

The input wildcard is enabled by default (this may be changed in the EEPROM settings). It may be disabled using COMMAND_DISABLE_INPUT_WILDCARD and reenabled using COMMAND_ENABLE_INPUT_WILDCARD. If it is enabled, any data that arrives on the DMX input is buffered, no matter what is the start code. If the input wildcard is disabled, only arrived data that matches the input start code set using COMMAND_SET_INPUT_STARTCODE will be buffered, any other data would be ignored.
It would be common practice for devices accepting DMX data to disable the input wildcard and filter on the input start code “0” in order to comply to the DMX standard. A start code of zero signifies dimmer data to be transmitted.

COMMAND_ENABLE_INPUT_WILDCARD
API call:

enableInputWildcard(port: Word)

Communication:

	PC
	Transmission
	Interface

	*

(

Description:

After using this command, the input wildcard will be enabled.
COMMAND_DISABLE_INPUT_WILDCARD
API call:

disableInputWildcard(port: Word)

Communication:

	PC
	Transmission
	Interface

	#

(

Description:

After executing this command, the input wildcard will be disabled.
COMMAND_SET_INPUT_STARTCODE
API call:

setInputStartcode(port: Word; startCode: Byte)

Communication:

	PC
	Transmission
	Interface

	S

(

	<new input start code>

(

Description:

After executing this command, the input start code to filter for will be set to <new input start code>. The input start code setting will be ignored if the input wildcard is enabled.
Input information

COMMAND_GET_INPUT_STARTCODE

API call:

getInputStartcode(port: Word; var inputStartcode: Byte)

Communication:

	PC
	Transmission
	Interface

	K

(

	<least significant nibble of received start code>

(

	#255

(

	<most significant nibble of received start code>

(

Description:

After executing this command, the least significant nibble of the last start code matching the filter received on the DMX input will be returned. COMMAND_SYNC must then be sent so that the most significant nibble will be returned.
COMMAND_GET_INPUT_COUNT
API call:

getInputCount(port: Word; var inputCount: Byte)

Communication:

	PC
	Transmission
	Interface

	G

(

	<least significant nibble of number of received channels>

(

	#255

(

	<most significant nibble of number of received channels>

(

Description:

After executing this command, the least significant nibble of the number of channels received in the last received full frame on the DMX input matching the start code filter. COMMAND_SYNC must then be sent so that the most significant nibble will be returned. This can be useful for determining how many values in the DMX input buffer are valid.
COMMAND_GET_TIME_SINCE_INPUT
API call:

getTimeSinceInput(port: Word; var timeSinceInput: Word)

Communication:

	PC
	Transmission
	Interface

	Z

(

	<least significant nibble of most significant byte of time since last input>

(

	#255

(

	<most significant nibble of most significant byte of time since last input>

(

	#255

(

	<least significant nibble of least significant byte of time since last input>

(

	#255

(

	<most significant nibble of least significant byte of time since last input>

(

Description:

After executing this command, the least significant nibble of the most significant byte of the time since any valid data is received on the DMX input matching the input start code filter is returned. COMMAND_SYNC must be used three times in order to receive the most significant nibble of the most significant byte, the least significant nibble of the least significant byte and the most significant nibble of the least significant byte. This results in a number between 0 and 65535. Multiplying this number by 0.000128 gives the number of seconds since the DMX input received any data.

This can be useful for determining whether the data in the DMX input buffer is still valid. If the result is more than about a second, it should be assumed that the DMX input has stopped and the data in the DMX input buffer is no longer valid.
Output parameters
COMMAND_SET_OUTPUT_STARTCODE

API call:

setOutputStartcode(port: Word; startCode: Byte)

Communication:

	PC
	Transmission
	Interface

	D

(

	<new output start code>

(

Description:

After executing this command, the output start code that will be transmitted will be set to <new output start code>.

COMMAND_SET_OUTPUT_COUNT
API call:

setOutputCount(port: Word; count: Byte)

Communication:

	PC
	Transmission
	Interface

	L

(

	<number of channels to transmit>

(

Description:

After executing this command, the channel count must be specified that is to be transmitted. This way a number of channels less than the maximum 255 can be transmitted. Any number between 0 and 255 is acceptable. If 0 is specified, only the start code would repeatedly be transmitted.
COMMAND_SET_BREAK_TIME
API call:

setBreakTime(port: Word; breakTime: Byte)

Communication:

	PC
	Transmission
	Interface

	B
(

	<break time (microseconds)>

(

Description:

After executing this command, the break time that will be used in between transmitted frames will be set, according to the number of microseconds specified in “<break time (microseconds)>”. Any value in between 3 (for a break time of 3 microseconds) and 255 (for a break time of 255 microseconds) is acceptable, however keep in mind that in order to comply with the DMX standard, the break time should at least be 88 microseconds.
COMMAND_SET_MAB_TIME
API call:

setMabTime(port: Word; mabTime: Byte)

Communication:

	PC
	Transmission
	Interface

	M
(

	<mark after break time (microseconds)>

(

Description:

After executing this command, the duration of the mark after break time, during which the line will be kept high after each break will be set, according to the number of microseconds specified in “<mark after time (microseconds)>”. Any value in between 1 (for a mark after break time of 1 microsecond) and 255 (for a mark after break time of 255 microseconds) is acceptable, however keep in mind that in order to comply with the DMX standard, the mark after break time should at least be 8 microseconds.
Multiplexer operation
On the Elektor LPT-DMX print, there are 8 unused microcontroller input pins. If using the new firmware, these pins can be shorted to ground for a DMX output value of 0 or left unconnected for a DMX output value of 255. COMMAND_INVERTED_MUX can be used to switch around this behavior. The multiplexer is only active while COMMAND_ENABLE_MUX (may be inactive by default, depending on EEPROM setting) and COMMAND_NO_FORCE_MUX_OFF (active by default) are activated. If the PC tries to write to the multiplexed DMX output channels, these values won’t be kept and quickly get overwritten by the multiplexer over and over again, unless COMMAND_FORCE_MUX_OFF is active to temporarily disable the multiplexer.
Please do realize that the multiplexed values couldn’t be output on the DMX line if COMMAND_ENABLE_OUTPUT is inactive.

The following scheme shows which processor pins can affect which DMX output channel value (<base> is the address set using COMMAND_SET_MUX_ADDRESS):
	Microcontroller pin
	Pin designation
	DMX output channel

	35
	P0.4
	<base> + 0

	34
	P0.5
	<base> + 1

	33
	P0.6
	<base> + 2

	4
	P1.3
	<base> + 3

	5
	P1.4
	<base> + 4

	15
	T1
	<base> + 5

	16
	WR
	<base> + 6

	17
	RD
	<base> + 7

An application example of this could be connecting a simple light pattern controller to the eight pins, so that a DMX switchpack/dimmerpack could be controlled by that even while the PC is turned off. Then when the PC is turned on, it could override the channel values by temporarily forcing the multiplexer to be disabled.
COMMAND_ENABLE_MUX
API call:

enableMux(port: Word)

Communication:

	PC
	Transmission
	Interface

	E

(

Description:

After executing this command, multiplexing of values from the 8 input pins to the eight channels starting from the channel specified using COMMAND_SET_MUX_ADDRESS will be enabled.

Normal software should not need to touch this command, usually enabling or disabling the multiplexer is to be handled by the user in the EEPROM. If the software needs to control the channels which are otherwise controlled by the multiplexer, the software should use COMMAND_NO_FORCE_MUX_OFF instead, so that the user’s preference will be preserved.

COMMAND_DISABLE_MUX
API call:

disableMux(port: Word)

Communication:

	PC
	Transmission
	Interface

	e

(

Description:

After executing this command, multiplexing of values from the 8 input pins will be disabled.

Normal software should not need to touch this command, usually enabling or disabling the multiplexer is to be handled by the user in the EEPROM. If the software needs to control the channels which are otherwise controlled by the multiplexer, the software should use COMMAND_FORCE_MUX_OFF instead, so that the user’s preference will be preserved.

COMMAND_SET_MUX_ADDRESS
API call:

setMuxAddress(port: Word; address: Byte)

Communication:

	PC
	Transmission
	Interface

	A
(

Description:

This command configures the DMX address at which the value from the first multiplexer input pin will be output. The other 7 pin values will be output at consequent addresses. The address must be inbetween 0 and 247.
COMMAND_INVERTED_MUX
API call:

invertedMux(port: Word)

Communication:

	PC
	Transmission
	Interface

	N

(

Description:

This command will cause the channel values output by the multiplexer to be inverted so that if a value of 255 would be output, 0 will be output and if a value of 0 would be output, 255 will be output.

COMMAND_NON_INVERTED_MUX
API call:

nonInvertedMux(port: Word)

Communication:

	PC
	Transmission
	Interface

	n

(

Description:

This command will disable the setting that causes the multiplexer output channel values to be inverted.

COMMAND_FORCE_MUX_OFF
API call:

forceMuxOff(port: Word)

Communication:

	PC
	Transmission
	Interface

	F

(

Description:

After executing this command, the multiplexer will temporarily be forced to be disabled, no matter whether it was enabled or not. Using COMMAND_NO_FORCE_MUX_OFF, the former multiplexer state can be restored. Software could use this if it needs to control the channels which are otherwise controlled by the multiplexer.

COMMAND_NO_FORCE_MUX_OFF
API call:

noForceMuxOff(port: Word)

Communication:

	PC
	Transmission
	Interface

	f
(

Description:

After executing this command, the multiplexer will no longer be forced to be disabled, so that the original multiplexer state will be restored. Software could use this if it no longer needs to control the channels which are otherwise controlled by the multiplexer.

COMMAND_GET_MUX_VALUE
API call:

getMuxValue(port: Word; var muxValue: Byte)

Communication:

	PC
	Transmission
	Interface

	Y

(

	<least significant nibble of mux value >

(

	#255

(

	<most significant nibble of mux value>

(

Description:

After executing this command, the least significant nibble of the value of the multiplexed pins will be returned, no matter whether multiplexing mode is disabled or overridden or not. COMMAND_SYNC must then be sent so that the most significant nibble will be returned.

Each bit of the resulting byte indicates a pin’s state, the least significant bit indicates the state of the pin for DMX channel <base> + 0 and the most significant bit indactes the state of the pin for DMX channel <base> + 7. A bit will be 0 if a pin is shorted to ground or 1 if a pin is unconnected if the COMMAND_NON_INVERTED_MUX setting is active. If the COMMAND_INVERTED_MUX setting is active it works the other way around so that a bit is 0 for an unconnected pin.
EEPROM
The default values for most settings are kept in the microcontroller’s built-in EEPROM. Also defaults for all output channel values are kept there. The EEPROM contents will automatically be loaded once the microcontroller is reset or powered on. Using COMMAND_WRITE_EEPROM, the EEPROM contents can be modified.

An easy to use wizard is provided in the test program for configuring the EEPROM for your application. It is accessible using the “EEPROM helper” button on the EEPROM tab.
COMMAND_WRITE_EEPROM
API call:
writeEEPROM(port: Word; inputEnabled, outputEnabled, muxEnabled, mergeEnabled: Boolean)

Communication:

	PC
	Transmission
	Interface

	W

(

	COMMAND_ENABLE_INPUT/COMMAND_DISABLE_INPUT

(

	COMMAND_ENABLE_OUTPUT/COMMAND_DISABLE_OUTPUT

(

	COMMAND_ENABLE_MUX/COMMAND_DISABLE_MUX

(

	COMMAND_ENABLE_MERGE/COMMAND_DISABLE_MERGE

(

Description:

After executing this command, the current values of the following parameters will be stored in the EEPROM to be used as default values:

· Break time;

· Mark after break time;

· Output count;

· Input wildcard status;

· Input start code;

· Multiplexer address;

· Multiplexer inversion status;

· Mass output transfer limits.

Also, all current output channel values will be stored in the EEPROM, but of course not the input channel values. Additionally, the input enabled status, output enabled status, multiplexer enabled status and merge enabled status will be stored according to the parameters supplied to this command.

COMMAND_READ_EEPROM
API call:
readEEPROM(port: Word)

Communication:

	PC
	Transmission
	Interface

	V

(

Description:

After executing this command, the following parameters will be restored from the EEPROM:

· Break time;

· Mark after break time;

· Output count;

· Input wildcard status;

· Input start code;

· Multiplexer address;

· Multiplexer inversion status;

· Mass output transfer limits;

· Input enabled status;

· Output enabled status;

· Multiplexer enabled status;

· Merge enabled status.

Also, all current output channel values will be restored, however any input channel values will be left untouched.

Please notice that COMMAND_RESET will also restore the EEPROM contents, however this command is different in that it doesn’t bring the microcontroller fully in its initial state, rather it will only restore the EEPROM contents, so that there will be no interruption in the unit’s operation.

If your program changed any of the parameters stored in the EEPROM, it is a good practice to call COMMAND_READ_EEPROM after calling COMMAND_FINISH when your program is finished doing its job, so that the user’s preferred settings for these parameters will be in effect again.

Merge mode
The advanced firmware is capable of outputting the channel values received on the DMX input after outputting the channel values handled by the PC, this is called merging. Merging may be disabled by default (depending on EEPROM setting), so that it may be necessary to enable it using COMMAND_ENABLE_MERGE.
If the merge mode is enabled, for every DMX output frame, the following will be output:

· All output channels up to the channel number set using COMMAND_SET_OUTPUT_COUNT (up to the 255 supported output channels);

· All channels received on the DMX input line (up to the 245 supported input channels).

Using this technique, values for 500 different channels can be output by the interface, although obviously still only 255 values are controllable by the interface.

If the merge mode is enabled, the input commands for retrieving input channel values from the interface will still be functional. Logically the merge mode will only be useful if COMMAND_ENABLE_INPUT and COMMAND_ENABLE_OUTPUT are active.
If you were to use the merge mode with COMMAND_SET_OUTPUT_COUNT set to 0, the LPT-DMX interface would almost become a simple pass-through/booster for the DMX signal, however the output start code will be dictated by the PC rather than the DMX input line. Also, the input values passing through the interface could be read out by the PC which could be an advantage.

